Water deficits in wheat: fructan exohydrolase (1-FEH) mRNA expression and relationship to soluble carbohydrate concentrations in two varieties.
نویسندگان
چکیده
Terminal drought is a risk for wheat production in many parts of the world. Robust physiological traits for resilience would enhance the preselection of breeding lines in drought-prone areas. Three pot experiments were undertaken to characterize stem water-solublecarbohydrate (WSC), fructan exohydrolase expression, grain filling and leaf gas exchange in wheat (Triticum aestivum) varieties, Kauz and Westonia, which are considered to be drought-tolerant.Water deficit accelerated the remobilization of stem WSC in Westonia but not in Kauz. The profile of WSC accumulation and loss was negatively correlated with them RNA concentration of 1-FEH, especially 1-FEH w3 (1-FEH-6B). Under water deficit, Westonia showed lower concentrations of WSC than Kauz but did not show a corresponding drop in grain yield. The results from pot experiments suggest that stem WSC concentration is not, on its own, a reliable criterion to identify potential grain yield in wheat exposed to water deficits during grain filling. The expression of 1-FEH w3 may provide a better indicator when linked to osmotic potential and green leaf retention, and this requires validation in field-grown plants.
منابع مشابه
Stem carbohydrate dynamics and expression of genes involved in fructan accumulation and remobilization during grain growth in wheat (Triticum aestivum L.) genotypes with contrasting tolerance to water stress
The genetic and physiological mechanisms underlying the relationship between water-soluble carbohydrates (WSC) and water stress tolerance are scarcely known. This study aimed to evaluate the main WSC in stems, and the expression of genes involved in fructan metabolism in wheat genotypes growing in a glasshouse with water stress (WS; 50% field capacity from heading) and full irrigation (FI; 100%...
متن کاملFructan 1-exohydrolases. beta-(2,1)-trimmers during graminan biosynthesis in stems of wheat? Purification, characterization, mass mapping, and cloning of two fructan 1-exohydrolase isoforms.
Graminan-type fructans are temporarily stored in wheat (Triticum aestivum) stems. Two phases can be distinguished: a phase of fructan biosynthesis (green stems) followed by a breakdown phase (stems turning yellow). So far, no plant fructan exohydrolase enzymes have been cloned from a monocotyledonous species. Here, we report on the cloning, purification, and characterization of two fructan 1-ex...
متن کاملDefoliation induces fructan 1-exohydrolase II in Witloof chicory roots. Cloning and purification of two isoforms, fructan 1-exohydrolase IIa and fructan 1-exohydrolase IIb. Mass fingerprint of the fructan 1-exohydrolase II enzymes.
The cloning of two highly homologous chicory (Cichorium intybus var. foliosum cv Flash) fructan 1-exohydrolase cDNAs (1-FEH IIa and 1-FEH IIb) is described. Both isoenzymes could be purified from forced chicory roots as well as from the etiolated "Belgian endive" leaves where the 1-FEH IIa isoform is present in higher concentrations. Full-length cDNAs were obtained by a combination of reverse t...
متن کاملبیان ژنهای درگیر در متابولسیم فروکتان در ساقه گندم تحت تنش کمآبی
Water deficient stress is one of the major limiting factors of wheat production in arid and semiarid areas of the world such as Iran. Under water deficient stress photosynthesis is limited and remobilization of assimilates stored in stems is more important to grain filling. In order to molecular analysis of fructan remobilization in wheat stem (penultimate) under terminal water deficit stress, ...
متن کاملCloning, characterization and functional analysis of a 1-FEH cDNA from Vernonia herbacea (Vell.) Rusby.
Variations in the inulin contents have been detected in rhizophores of Vernonia herbacea during the phenological cycle. These variations indicate the occurrence of active inulin synthesis and depolymerization throughout the cycle and a role for this carbohydrate as a reserve compound. 1-Fructan exohydrolase (1-FEH) is the enzyme responsible for inulin depolymerization, and its activity has been...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The New phytologist
دوره 181 4 شماره
صفحات -
تاریخ انتشار 2009